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ABSTRACT 
Distributing Artificial Intelligence (AI) over multiple nodes or devices makes perfect sense when information 
and/or the resulting action is spatially distributed. In addition to reducing latency in decision making, it leads 
to solutions that are more robust and reliable in the presence of failures or interference, and provides better 
security and privacy. How to distribute the intelligence over the devices that may be heterogenous in their 
capabilities, and how to efficiently and effectively make nodes collaborate, coordinate and join forces are 
questions that are under intense research and debate as we speak. The challenge becomes even more 
profound when these nodes are mobile, the network changes dynamically, privacy of data and/or models, 
and explainability become important. This White Paper describes the state-of-the-art from a functional and 
algorithmic point of view, and provides preliminary insights into where and how technology, circuits, 
architectural and algorithmic innovations may be necessary in light of tight energy and form factor 
constraints. It concludes with a couple of recommendations for future actions. 

 

INTRODUCTION: WHAT AND WHY 
 
There are many reasons why intelligent processing is migrating from the Cloud to Edge and Extreme 
Edge devices. Perhaps security and privacy reasons may be a strong motivation for processing 
information locally, and sharing only essential outcomes over the network. The energy cost of 
communicating raw data over wireless links may be another one. Moreover, latency, fast response 
to changing conditions, and robustness in the presence of failure or interference make it even more 
desirable to have a significant part of the processing performed locally. Think, for instance, about 
intelligent wearable devices such as lightweight AR/VR glasses, “babel-fish”-like earpods, or 
intelligent medical implants such as brain-machine interfaces that observe, diagnose and stimulate. 
Finally, the combined computational power of multiple devices working in parallel may lead to 
faster learning and understanding. All these ideas can be clustered under the header of “distributed 
AI”. 
 
Yet there are other motivations that go beyond the pure distribution of machine leaning functions 
over multiple devices. This is the case whenever information and the resulting action/reaction is 
spatially distributed or/and when devices have different capabilities and functionalities. The most 
compelling scenario is when these devices establish a level of autonomy, in which they not only 
observe locally, but also learn, reason, decide and act in close form to solve problems. They may 
do this in concert and in coordination with other autonomous but collaborating agents. Consider 
for instance autonomous mobile entities such as drones and robots in any form or shape as the 
(extreme) edge devices. Most of the time we think about these devices as individual entities, 
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performing one or more designated tasks – such as, for instance, a Roomba robot clearing a floor 
or mowing a lawn. However, for many tasks it may be more desirable to have a group/cluster/flock 
of devices collaborating. Those could be identical devices, such as a swarm1 of drones, or they could 
be heterogenous, each with their own capabilities, such as drones collaborating with ground-based 
robots. The collaboration can be as simple as building a joint understanding of the world around it. 
However, we can imagine scenarios in which the individual modules combine forces and together 
form an ensemble of higher complexity, such as assembling furniture [ACK 20].  
 
Some simple examples of recent activities and projects can help to illustrate the concept. Already 
in 2012, the Kumar group at the University of Pennsylvania demonstrated a group of drones doing 
joint maneuvering indoors (Fig 1a) [KUM 13-19]. The processing and coordination of this realization 
was highly centralized, however, with all the sensing done in the surrounding environment (using 
a VIKONG localization system), and only commands sent to the drones wirelessly. In 2018, the same 
group demonstrated a similar experiment outdoors, this time with a fully decentralized realization 
(Fig 1b) [KUM 13-19]. One possible industrial application of such an approach could be to have 
heavy machinery such as agriculture, decontamination or mining equipment, surrounded by a 
swarm of drones to help in terrain mapping and guidance (Fig 1.c). More down to earth, mobile 
components acting together could help create a far more conducive environments for assisted 
living, as is envisioned in the Roombots project in the Ijspeert group at EPFL (Fig 1.d) [ACK 20, HAU 
20]. 
 
Intelligent swarms can be accomplished in many different ways, depending on the amount of 
communication between the nodes, how tasks are distributed and where decisions are made. On 
one extreme, one has the fully centralized approach in which the edge nodes share all their 
observations with a centralized processor that performs the decision making and action planning, 
and translates them in control commands for the remote entities. On the other extreme, we have 
a fully decentralized solution where nodes are fully autonomous and collaborate through 
observation and limited communication, similarly to social insects such as ants or bees. In between, 
we can imagine scenarios in which entities share what they learned and what they know (either by 
inter-node communication or through a centralized agent).  
 
To explore the trade-off’s, challenges and opportunities in realizing truly distributed AI that fit 
within the form factors and energy budgets of Extreme Edge devices, we envision a “swarms on a 
mission” scenario.2 In this, a group of small devices gets assigned a task(s) to be executed. This 
could be the mapping of a large agriculture field and deciding where to harvest, the discovery of 
human survivors after a major disaster, the guidance of a convoy through unknown terrain, or to 
help support the elderly in living-at-home conditions. It could also be a collection of wireless 
devices, deciding what spectrum to use under interference conditions so that the capacity is 
optimized (see, for instance, the DARPA Spectrum Challenge [SPE 19]). In the extreme case, it may 
be a group of digestibles or submersibles nanobots searching and addressing an anomaly in the 
                                                
1 To clarify: when we use the terms “swarm” in this paper, we allude to a group of dynamically interacting devices. This is only marginally related 
to the often-used term of “swarm intelligence”, which refers to the collective behavior of decentralized self-organized systems [SWA 20] (such as 
ants), in which each individual device is very simple and limited.  
2 Notice that the form factor and the energy budget of an “extreme edge” devices can vary over orders of magnitude, so does the computational 
capability. An autonomous car can obviously carry a much larger load then a flying bot. However, as nature shows us, the need for computational 
complexity scales with system complexity (humans versus flies). In this paper, we assume that energy of computation will be a constraining factor, 
independent of the size or complexity of the device. 
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human body. The task at hand 
needs to be divided over the 
nodes, information gained needs 
to be shared and actions decided 
upon. There may or may not be a 
centralized node helping to 
orchestrate the operations or 
provide background information 
(such as pre-trained learning), 
and there may be humans 
involved in the whole process. 
Some nodes may want to limit 
what is shared so as not to 
divulge proprietary internal 
information on how they 
accomplish their tasks, while 
some other nodes may be hostile 

and try to disrupt by providing fake information. One prominent task for research to address is how 
to create solutions/platform/components that can be rapidly deployed across these widely different 
applications. Phrased differently, how can we make reusable components that can be 
parameterized/configured to the different use cases with wide variance in environmental settings 
and optimization goals.  
 
While the swarms-on-a-mission scenario builds on many concepts developed in the AI community, 
it brings a number of novel aspects to the table, which makes it an interesting opportunity for 
innovative implementation platforms. More precisely: individual nodes must realize a variety of 
different functions including observation, learning, recognition, reasoning and decisioning; 
intelligence is not centralized but distributed; and communication plays a central role in the whole 
system concept. What, when and how to communicate information will play a decisive role in 
determining the responsiveness, robustness and safety of the resulting swarms. And again, how to 
efficiently implement and deploy these nodes starting from configurable and reusable 
components, hence avoiding the trap of having to develop a customized solution for each 
individual use case. 
 
In this paper, we first present the state-of-the-art relevant to autonomous and distributed AI from 
an algorithmic point-of-view. We then identify the design metrics and design constraints that must 
be considered if one wants to arrive at practical realizations of these swarm devices and systems. 
Combining the two helps us to identify opportunities from an implementation perspective 
(algorithm, architecture, circuit, device), and prescribe some opportunities for high-impact 
research on that front. Note that smart sensors and actuators play an equally important role in the 
realization of swarm nodes, but their realization is out of the scope of this paper. 
 
 
 
 

 
Fig.1: Examples of collaborative swarms. (a) drone swarms controlled by 
centralized agent [REF]; (b) full decentralized drone swarms; (c) drones 
assisting heavy machinery; and (d) robot swarms in assistive environments. 

(a) (b)

(c) (d)
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THE STATE OF THE ART IN AUTONOMOUS AND DISTRIBUTED AI 
 
This section aims to provide a brief review of the current state of the art in areas of distributed 
artificial intelligence and autonomous control of multi-agent systems, two areas that are critical in 
enabling our vision of achieving true swarm intelligence. It is worth mentioning that intelligent 
swarms and distributed AI have been the topic of research for quite a while, but activity and 
interest have picked up substantially over the past few years. A broad spectrum of academic 
research groups has been contributing to the progress in the field3. Recently, the C-BRIC multi-
university center [CBR 18] was funded by the SRC/DARPA JUMP consortium to explore a new 
generation of autonomous intelligent systems, bringing together some of the leading academic 
researchers in the field. 

Before diving into the details of the 
most prevalent techniques in use 
today, it is worth penciling the big 
picture first. State-of-the-art machine-
learning techniques have 
demonstrated huge success on 
various perceptual tasks. Going 
beyond and to realize true swarm 
systems requires the conception of 
agents with an ability to reason, plan 
and make decisions. The anatomy of a 
prototypical swarm agent is shown in 
Figure 2a. In its simplest form, it can 
be decomposed in two functions:  (a) 
An inner Agent network that  
essentially presents  a generative 
model of the world, which the agent 
learns through its interactions with 
the environment in a self-supervised 
setting.4 Possible approaches to this 
include variational auto-encoders and 
generative adversarial networks 
(GAN); (b) An outer reinforcement 

learning function that uses the generative model of the world to generate and imagine possible 
future trajectories, which are then used for planning and decision making.  The Critic evaluates the 
trajectories and informs the Actor what action(s) to select to, for instance, maximize a scalar 
reward signal. This also reflects how the brain might work according to the active inference 
framework [FRI 16]. In this case, the Critic minimizes the expected free energy or future prediction 
error of the generative model. In contrast to maximizing a scalar reward, minimizing the expected 
free energy also comprises minimizing ambiguity, minimizing complexity and maximizing epistemic 

                                                
3 For the interest of the reader, we enumerate a list of some of the leading research labs in swarms and distributed robotics (without any claim of 
completeness):  Vijay Kumar and Mark Yim,  Alcherio Martinoli, University of Pennsylvania; Radhika Nagpal, Harvard; Daniela Rus, MIT; Gaurav 
Sukhatme, USC; Alcherio Martinoli and Auke Ijspeert,  EPFL; IDLab, University of Antwerp; and others. 
4 Note that for some systems the world model may be known or may be pre-trained (e.g. the map of the operational space is known in detail). This 
would eliminate the learning step (or at least part of it). 

 
 
Fig. 2: Anatomy of an autonomous agent. (a) Agent to perform planning, 
reasoning and decision making based on learned/inferred view of the 
world [LEC19]; (b) collaborating agents share information about their 
world view.  

(a)

(b)
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value, which are indispensable in real-world scenarios [e.g. CAT 20, CAT 20a]." Observe that this 
diagram is purely functional, and that it does not imply where these functions actually reside. By 
necessity, sensors and actuators are distributed in the environment.  All other functions could be 
performed locally on the device next to the sensors, on a mobile device, or centralized on a remote 
server, or partitioned over all of them.  
 
A multi-agent version of this architecture is shown in Fig 2b. In this case, agents work together to 
create the world model, either by direct interaction or through a centralized server. This differs 
from the single agent case in that each agent may have only a partial worldview and that 
information exchange is an essential part of the picture. How, how often and how much are hence 
critical questions to be addressed. From an actor perspective, each agent may pursue its own 
individual task, or multiple agents can collaborate to accomplish a joint task. 
 
The remainder of this section is hence structured along the same lines. We first describe 
approaches for distributed learning, essential in the creation of the world model. This is followed 
by an overview of the state-of-the-art in distributed intelligent control, addressing the actor part 
of the agent(s). Observe that we do not cover (distributed) inference, as this domain is the most 
mature and covered extensively in the literature [e.g. SZE 20]. In addition, energy-efficient 
realizations are steadily becoming available. This limits the room for innovation5. The same holds 
for the area of distributed decision making (consensus building, leadership election, …) that is 
relevant to the intelligent control part of the agents (see, for instance, the seminal work of Nancy 
Lynch at MIT [LYN 20] on those topics). 
  
Distributed	Learning	
 
In a group of swarm agents, each agent is characterized by limited observability, i.e. each agent has 
at best a partial view of its environment at any time, limited compute and memory capacity and an 
uncertainty in communication with other agents. How to enable a comprehensive vision on the 
environment surrounding the agents by collating data and enabling collaboration amongst these 
agents is an open problem. The sub-sections below aim to provide a brief overview of some recent 
advancements and different approaches in distributed learning (See Table 1 for a global overview), 
and how these could be applied to swarm intelligence.  A more detailed overview of distributed 
learning methods and architectures can be found in a recently published survey [VER 20]. 
 

 Federated Decentralized Split 
Location of learning Central and local  

(concurrent) 
local Split between 

central and local 
Communication star peer-to-peer star 

Table 1: Classification of distributed learning approaches. 

A. Federated	Learning	
 

                                                
5 This statement does not imply that no further progress or advances can be expected in the domain of distributed inference. Available methods 
and hardware for edge devices are still very limited and focus almost uniquely on image classification. There is no question that the swarm domain 
will be open new opportunities and insights in this domain as well. 
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Federated learning (FL) [BRE 17] is a machine learning approach in which multiple agents/clients 
(e.g. edge devices, mobile phones) collaboratively train a single global model (typically one or 
another form of a DNN) under the orchestration of a central server while keeping the training data 
decentralized.6 Essentially, each client calculates a local update to that model based on its own 
data, and the central server then aggregates the updates from all the clients to update the overall 
model. The updated model is then sent back to each client for future updates. FL tries to leverage 
the fact that stochastic gradient descent (SGD) forms the backbone of most of the state-of-the-art 
deep learning algorithms, and scaling SGD to a massively parallel setting has been quite successful 
for large-scale training in datacenter (e.g. the Google DistBelief [DEA 12]). Consequently, a key 
question is “Can we parallelize training over a large number of agents, or edge devices each 
constrained with limited computation, energy and communication capacity?” However, unlike 
parallelizing SGD in large-scale data center settings, Federated Learning across separate devices 
brings a unique set of challenges: 
§ Computation – Communication Tradeoff:		Unlike in a datacenter setting, the lack of an efficient, 

low power, reliable & dedicated communication channel amongst different agents and the 
central server makes FL more complex. How to manage the energy tradeoff between on-device 
computation and communication amongst agents and central server while minimizing loss in 
algorithmic accuracy is one of the most important challenges in FL. Recent works such as [KON 
16] [SUR 17] try to reduce the communication requirements by compressing, sparsifying, and 
quantizing the gradient updates while minimizing the loss in training accuracy. In [CAL 18], 
authors further try to reduce communication cost by compressing the model update being sent 
from central server to client nodes. However, it is still unclear if we have found an optimal 
distribution between communication, on-device compute and training/test accuracy. Hence, 
more work is warranted in this direction, especially in a swarm setting. Another approach 
allows local nodes to judge whether their updates are significant, and only send model changes 
if this passes a threshold. 

 
§ Non-IID Data Distribution:	 	Since each agent gathers its own dataset, it is likely that the data 

gathered by different agents is not independent & identically distributed (IID). For example, 
different agents may observe covariate shifts, i.e. have different feature distributions, or 
distribution of the label that each client views may be different. Presence of locally non-IID data 
makes convergence of algorithms difficult and often slower and increases the error in 
optimization, although some progress has been reported recently on the front [ZHA	18].	

 
The initial results in FL have been encouraging, and the first commercial use cases have emerged, 
such as in Google’s GBoard Mobile Keyboard [AND 18, SUN 19], and Apple’s QuickTime Keyboard 
and vocal classifier [APP 19]. Yet, valid questions arise as to how and if FL could be applied towards 
building swarm intelligence. In particular, the only demonstrated use cases are for supervised 
learning tasks in a privacy preserving setting (where individual training data is not shared in order 
to build the global model). Extending FL to a myriad of other intelligent tasks such as for generative 
modeling, reinforcement learning and unsupervised learning is largely unexplored. Furthermore, 
most of the algorithmic success in FL has been restricted to applying vanilla stochastic gradient 
descent (SGD), and there is no consensus yet around how to incorporate various other first order-

                                                
6 One of the main motivators behind this approach is for security or privacy considerations. Yet it may offer advantages in terms of communication 
efficiency and consistency.  
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optimization techniques such as momentum methods and variance reduction techniques in a FL 
setting constrained with limited communication bandwidth [JIA19]. Note also that the limitation 
of learning a single model limits its potential applicability to fairly homogeneous swarms with 
nodes that essentially all use the same model.  
 
B. Amalgamated	learning	
 
(Privacy-preserving) Amalgamated Learning (PPAML) [CEU 19] is a distributed machine learning 
approach where each agent/client learns and uses its own prediction model on its own data. The 
accuracy of each of the local models is improved by sending information derived from the node to 
a broker (which can be centralized or distributed) that aggregates this information and sends back 
information to improve the models of the individual clients. PPAML was developed to be applicable 
in contexts where neither the raw data nor the complete local models can be shared between 
partners due to privacy or commercial confidentiality reasons – for example, for the IP protection 
of the models. This has a side advantage that the amount of inter-node communication is reduced 
as well. Because different agents can have different models, PPAML could be applicable in 
heterogenous swarms where agents’ behavior can differ more than what a single model can 
generalize. On the other hand, it can still be considered a centralized technique since part of the 
learning phase is a centralized machine learning step. 
 
C. Peer-to-peer	fully	decentralized	learning	
 
The need for a central server to orchestrate the collection and aggregation of the model updates 
limits the potential of federated learning or amalgamated learning in several mobile and 
collaborative learning scenarios. Further, while federated learning adds partial redundancy and 
makes the system robust to failure of one or more of the clients, it makes the solution prone to a 
single point of failure which is undesirable. Also, the communication between client and server 
becomes a serious bottleneck as the number of clients increase.  
 Fully decentralized learning replaces the communication between the agents and a 
centralized parameter server with peer-to-peer communication between individual clients. Such 
fully decentralized learning algorithms for machine learning have attracted a lot of interest recently 
[DUC 12] [COL 16] [LIA 17] [LIA 18]. In essence, most of these algorithms try to implement a fully 
decentralized version of stochastic gradient descent (SGD) by way of a two-step algorithm: In the 
first step each client calculates its own local update, i.e. a gradient update based on its own local 
data, and in the second step all clients try to reach a consensus or an average model by means of 
averaging their own model parameters with those of theirs neighbors.  
 While initial results look promising, several algorithmic and practical challenges need to be 
overcome before such algorithms become usable in practical machine learning systems. From an 
algorithmic perspective there are several questions around the convergence of these algorithms 
for dynamically changing network topologies. Since clients may be temporarily unavailable or may 
drop out and rejoin, developing a better understanding of convergence of these algorithms under 
dynamically varying graph topologies is essential. Further, since the agents in swarm or edge 
devices are usually constrained in power, the energy consumption needs to be balanced carefully 
between on-device computation and communication amongst clients. Approaches such as merging 
gradient compression, quantization and sparsification, as proposed in [KOL 19], [KOL 20], may help 
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to address some of these concerns. In addition, whereas each client may take several local updates 
before communicating its update to the parameter server in Federated Learning, convergence for 
fully decentralized peer-to-peer learning algorithms with locally non IID datasets and multiple local 
updates still needs further understanding [JIA 19].   From a more practical perspective, several 
questions remain such as which agent decides what is the underlying model that should be trained, 
which algorithm hyperparameters to use, and how hyperparameter tuning gets executed.  
 Finally, similar to Federated Learning, almost all the recent work so far focuses on 
supervised learning tasks. How to translate these algorithms to other machine learning tasks such 
as sequence models, reinforcement learning and unsupervised learning remain open questions. 
Again, the learning of a single model limits its potential applicability to fairly homogeneous swarms 
with nodes that essentially all use that same model. 
 
D. Split	Learning	

 
Split learning [GUP 18] is another 
distributed learning approach, in 
which we split the training of the 
model between the clients and a 
(edge, hub, central) server. In its 
simplest configuration the client 
locally executes the first few 
layers of the model/network up-
to the cut layer. The output of 
the cut layer is transferred to the 
central server for further 
processing.7 During 
backpropagation the gradients 
from the last layer to the cut-
layer are calculated at the central 
server, and only the final 
gradients from the cut layer are 
transferred back to the client, 
which then completes 
backpropagation for the first few 

layers. The above concept has been extended to a multi-client / single server setting with promising 
results [VEP18]. A major advantage of split learning over federated learning is that it significantly 
reduces both the client-side processing requirements and the amount of data that needs to be 
transferred between clients and the server. This is because unlike federated learning where all the 
weights/gradients of the network need to be exchanged between the client and the server, here 
only the weights/gradients of the cut-layer need to be exchanged. Figure 3a [VEP 18] shows a 
comparison between per client computation needed to achieve different degrees of validation 
accuracy when training VGGNET on CIFAR10 dataset over 100 clients, and RESNET-50 on CIFAR100 

                                                
7 This model resembles to a degree the human sensory system (olfactory, vision) in which the first layers of the network are 
located next to the sensors, while the higher layers of abstraction are placed in the cerebellar cortex. The partitioning is done such 
that the communication bandwidth is minimized. 

 
Figure 3a: Computational requirements (clients only) in Split Learning 
compared to SGD and Federated Learning for 100 and 500 clients, respectively 
(adapted from [VEP18]). 

Figure 3b: Communication bandwidth required per client with a large number 
of clients. For setups with a smaller number of clients, federated learning 
requires a lower bandwidth. Large batch SGD methods popular in data centers 
use a heavy bandwidth in both settings. (adapted from [VEP  18]). 

Method 100 Clients 500 Clients
Large Batch SGD 13 GB 14 GB
Federated Learning 3 GB 2.4 GB
SplitNN 6GB 1.2 GB
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dataset over 500 clients using federated averaging, large batch SGD [GOY 17] and split learning. 
The communication requirements per node are presented in Figure 3b. 
 
In a related approach, one can imagine a distributed DNN architecture that places bandwidth- and 
task-aware encoding at the edge device, while the core neural networks are located at the hub [CHI 
18]. The encoders would be optimized for machine perception rather than human perception (such 
as the MPEG-4 encoder for video).  This is a form of a hybrid network in which different NN models 
are combined. 
 

While split learning between edge devices and servers is a promising direction for a number of 
applications, similar to federated learning it makes the system prone to a single point of failure. It 
is also heavily dependent on a reliable communication channel between the central server and 
clients. This makes it less attractive for large scale swarm networks operating in settings with 
limited communication reliability and dynamic reconfiguration.   

 
A difference with federated learning is that split learning does not necessarily learn a single 

global model: the models can potentially structurally differ in the layers on the devices. One can 
imagine a setup in which the first layers differ as long - as the cut layer is the same. This setup 
embraces the situation where data gathered by different agents is non-IID. Local models for each 
agent are able to adapt to these variations over agents.  Extensive research is needed to see how 
much differentiation in device models can be afforded in such a setup.   
 
E. Transfer	Learning	
 
Another related learning technique that is important in swarm settings is transfer learning (TL). 
Transfer learning refers to learning methodology wherein a network pre-trained on a similar task is 
used as a starting point for the learning of a new network. It allows for improving the performance 
of a network on a new task through the transfer of knowledge from a related task that has already 
been learned. Transfer learning is particularly interesting for swarms in which the lifetimes of the 
agents may not all be the same. If one agent gets replaced, expires or added, the newly introduced 
nodes do not want to re-learn everything from scratch. Conventionally, transfer learning 
approaches have been quite successful in many computer vision and natural language processing 
tasks, such as [YOS 14] [RAZ 14]. It still needs to be established how well TL techniques extend to 
reinforcement learning and multi-agent settings. It definitely presents an interesting direction for 
further research.  
 
In summary, a broad range of distributed learning approaches can be considered. What can work 
in practice is all a function of the memory, communication and compute limitations of the 
distributed devices. For instance, the availability of storage will determine the size of the model 
that can be learned.  Latency is another concern. Finally, minimizing communications will be 
essential as wireless bandwidth is always at premium, and its availability may vary substantially: 
hence, “send only information that is needed, and send it as slowly as possible”. This will be 
discussed in more detail later. 
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Autonomous Control of Multi-Agent Systems 
 
In addition to developing distributed and collaborative intelligence algorithms that enable us to 
gather insights from data, efficient algorithms for planning, control, coordination and 
communication between a swarm of agents are essential to enable them to accomplish meaningful 
tasks. Multi-agent planning and coordination is a long-standing problem, and has been well studied 
by researchers. Yet, only over the past one or two decades have we seen a convergence between 
traditional control systems theory and machine learning.  
               Most deployed solutions employ a centralized approach to the problem. In such a setting, 
the controller gets access to full information about the state of the environment, gathers data from 
all the sensors in all the agents (locally and globally), and then solves the planning, control and 
coordination problem as a giant optimization problem [SCH 18]. The outcomes are then conveyed 
to the agents. Unfortunately, this does not scale well with increasing numbers of agents. This rising 
computational complexity of the optimization problem may necessitate offloading the task to a 
central server with large computational resources, which further increases the communication 
bandwidth requirements and latency. Additionally, it is often hard to establish a reliable, low 

latency communication network between all 
the agents and the central node. Decentralized 
controllers can be scaled more easily, reduce 
the communication bottleneck, and are more 
robust to failure of one or more agents. 
Unfortunately, real-life performance of 
today’s decentralized controllers lags 
substantially behind that of their centralized 
counterparts.  

The success of deep learning for 
various perceptual tasks in computer vision 
and natural language processing has inspired 
researchers to explore addressing sequential 
decision making and control problems as a 
machine learning approach as well. Among the 
many options to do so, reinforcement learning 

(RL) has emerged as the leading candidate. In an RL framework, the agent observes the 
environment, infers its state, and decides on an action based on a learned policy (Figure 4) that 
attempts to maximize the long-term reward. In its basic form, the control problem is modelled as 
a Markov decision problem (MDP)8. A policy presents a distribution of actions to undertake given 
that the agent is in a particular state, chosen so that it can maximize its long-term reward. While 
the basic concept of RL is quite old [SUT 98], combining RL together with deep learning models has 
had remarkable success in many different areas, such as in playing Atari Games [MNI 13], in using 
policy gradient techniques for playing games [SCH 15], in applying policy gradient and Q-learning 
techniques to real-world robotic problems [LEV 15],[KAL 18], and in combining supervised learning, 

                                                
8 Reinforcement Learning (RL) solves Markov Decision Process (MDP) when the MDP is not known, in other words you don’t know 
the states you can visit and you don’t know the transition function from each state. 
 

 
Figure 4. Schematic diagram of single-agent reinforcement 
learning framework. 
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policy gradients, value functions and Monte-Carlo tree search to beat the human GO champion [SIL 
16].9 
 

Given these successes, it was only logical for the research community to consider the 
problem of decentralized control of multiple agents as a multi-agent reinforcement learning 
problem. A collaborative multi-agent task can then be formulated as a decentralized-partially 
observed Markov Decision Problem (DEC-POMDP). Unlike an MDP, a DEC-POMDP is characterized 
by partial observability. The overall goal of the collaborative team of agents is to learn a joint policy 
that maximizes long term expected rewards. Deep reinforcement learning for DEC-POMDP can be 
partitioned along two classes, depending upon where and how the training is done, (a) Centralized 
training (CTDE) [RAS 18] [SUH 18], and (b) Decentralized (DTDE) [OMI 17] [AMA 19]. In both cases, 
the execution is decentralized. 
 
 
A. Centralized	Training	with	Decentralized	Execution	(CTDE)	
 
The CTDE paradigm usually relies on use of simulation engines for their initial training. For example, 
a robot can learn path planning and object localisation in a simulated environment. The policies 
learned along the way are then transferred to real life devices using transfer learning techniques 
such as [SAD16, YEV19, STE19]. The key advantage of using CTDE is that during the simulated 
learning exercises all the virtual agents have access to all the global state information, and that 
parameters and gradients of the policy can be shared amongst all of them. This significantly 
simplifies the training task. However, the execution of the policy is decentralized, with each agent 
taking an action based on its own observed action-observation history. In practice, this is achieved 
by choosing the overall joint policy function for the agents such that it is easily factorizable into 
parts. For example, [RAS 18] proposed to use the joint policy function as the sum of all individual 
policy functions, and [SUH 18] improved upon the idea by forcing the joint action-value function to 
be any monotonic function of individual action-value functions. One disadvantage of the CTDE 
approach is that the simulation complexity puts an upper bound on how realistic the scenarios can 
be and on the scaling of the number of nodes involved.  One could imagine a centralized learning 
scenario in which all learning is done on-line and all observations are transmitted to the central 
server. However, bandwidth requirements and reliability may make this approach impractical for 
constrained devices. 

 
B. Decentralized	Training	with	Decentralized	Execution	(DTDE)	
 
Unlike CTDE, DTDE attempts to solve the DEC-POMDP without allowing the agents to share global 
state even during training. A major advantage of these techniques is that they are not limited to 
the “training by simulation” paradigm only, and that they can be coupled with on-line training 
techniques. This makes them very attractive for most environment which makes learning difficult. 
In [OMI 17] authors tried to overcome non-stationarity and partial observability by adding 
hysteresis and recurrent layers to deep-Q networks. In [AMA 19] authors also introduced 
hierarchical policies using macro-actions to further improve scalability of such techniques. 

                                                
9 There are other approaches to smart distributed control beyond reinforcement learning. Given the current success of RL and the 
limited scope of the paper, we choose to focus our attention on RL and its distributed formulations. 
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However, even after significant efforts current state of the art techniques in DTDE significantly lag 
in performance as compared to CTDE counterparts on most benchmark tasks.  
 
While multi-agent reinforcement learning provides a promising learning-based approach to solving 
challenges in decentralized planning, control and coordination, a number of known challenges in RL need 
to still be addressed before we will see multi-agent RL for autonomous control in real life day-to-day 
applications. Some of these are:  overcoming data inefficiency of RL by self-supervised learning; finding 
novel ways of imitation learning; inverse reinforcement learning to improve rewards engineering; and 
extending RL to hierarchical settings to extend scalability.  

 
 
Other	Relevant	Approaches	
 
In addition to above technologies in distributed AI, we anticipate graph neural networks and 
memory augmented neural networks might also play a major role in developing true swarm 
intelligence. Since the data gathered by a collaborative team of agents is inherently irregular, 
recent advances in graph neural networks [WU 19] which aim to apply deep learning to irregular 
data structures such as graphs could play an important role in swarm settings. Further, recent 
success in imagination augmented planning networks [WEB 17] and memory augmented neural 
networks [SEB 17] [GRA 16] [WAY 18] for solving tasks with partial observability make them prime 
candidates for use in swarm settings. Unfortunately, given the huge complexity and large energy 
consumption, these networks have yet to be brought to swarm agents with limited power and 
compute capacity.  
 
Swarms	and	Distributed	Robotics	
 
The above-mentioned approaches have been applied to some extent to the swarms and distributed 
robotics application domains. This is definitely a hot area of research. Earlier, we have identified a 
number of active research efforts that are active in this domain (See footnote 3).  While a number 
of these projects are based on intelligent control, other take inspiration from the biological world 
(such as swarms of insects). Given the focus of this paper on machine learning approaches, we will 
leave it to the interested reader to browse the provided references.	
 
RELEVANT METRICS & CONSTRAINTS   
 
As mentioned, there are a number of reasons why one may choose to bring the intelligence from 
the cloud to the extreme edge, such as operational conditions and availability of wireless 
connectivity, enhanced security and privacy, reduced latency, and improved robustness. An 
overview of the relevant metrics is presented in Table 2. It is crucial to consider the specific 
requirements and constraints of the specific application (i.e. the “mission) before making any 
decision on where to locate or how to partition the AI. For instance, energy cost may not be a 
concern when the edge-device is wall-powered, or when the compute power is minor compared 
to the power consumed by the mechanical components. Security may be of essence in 
autonomously operating devices (such as drones or bots), where malicious intrusions may lead to 
physical harm. In medical devices, safety and/or privacy may be the dominant decider. Another 
scenario where privacy-preservation is the priority constraint, while performance/energy savings 
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are more relaxed, is the domain of distributed edge computing. These networks are rather static in 
nature, but communication is expensive because of privacy preservation rather than latency (while 
this not a scenario that one easily labels as a swarm, many of the same principles apply. 
 
 

 
As an example, consider the power budget for a 
swarm of drones. Simultaneous localization and 
mapping (SLAM) [SCH 18] and autonomous flight 
for search and rescue [SCR 15] are among the tasks 
that can benefit from autonomous and distributed 
AI. Figure 5 [MUL 14] shows that a significant portion 
of the power consumption in drones is spent on 
motors and mechanical parts. In fact, it is estimated 
that 200W/kg is needed just to hover the platform 
[MOH 18]. A typical drone such as DJI Flamewheel 
450 used in [MOH 18] with all its sensing, computation and battery weighs 2 to 3 kg, which 
translates to more than 400W power just for hovering. An embedded GPU such as NVIDIA Jetson 
Nano burns 10W in total at its maximum, and a radio transceiver dissipates even less. Therefore, 
the power consumption of the mechanical portion dominates any savings available from optimizing 
the AI algorithms/hardware or reducing the communication costs. However, this balance does shift 
over time as the size and weight of drones is shrinking. For instance, the mini-drone platform used 
in [HUL 15] has a total power budget of only 35W. In addition, more sophisticated sensing 
modalities and increasing intelligence will most lead to a larger fraction of the overall power budget 
to be assigned to electronic processing.10 This is apparent in the more recent the Skydio-2 drone 
[SKY 20]. It weighs only 0.75 kg and has a flight time of 23 minutes, while performing some 
advanced tracking functions using an NVIDIA Tegra TX2 SOC (7.5W), and video capture using an 
additional GPU, CPU and signal processors. It sports 45 MegaPixels of visual sensing from six 200-
degree color cameras, as well as other video and motion sensors.  With all of this, the electronics 

                                                
10 In a sense, this is analogous to the evolution in petrol-powered automobiles over the last 100 years, where electrical functions have 
taken an ever-increasing fraction of the overall power budget at the expense of the mechanical functions. This is both due to more 
efficient engines as well the introduction of electrical functions and “smartness”.  

 
 
Table 2: Relevant metrics for Extreme Edge devices, complement or superseding traditional Power-Performance-Cost (PPC) 
considerations. 
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Figure 5: Power distribution in quadrotors. 
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(including a WiFi wireless) link take a much larger fraction of the power budget. This trend has 
definitely not been lost to drone manufacturers, who are increasingly developing their own custom 
SOCs to improve energy efficiency (and consequently mission or flight time). 
 
To get a perspective on where this may lead, let us explore a hypothetical scenario, in which we 
add distributed learning and autonomous decision making to the drone. To make it more concrete, 
assume a task similar to learning a ResNet DNN. From [BAR 20, Table 2.1], we derive that this would 
take 3 MJ of energy on a 1 TOPS/s/W GPU.  On a 10W GPU (Jetson Nano), it will take 167 hours to 
complete this learning. Even if we do it collectively on 100 drones, it is still 1.7 hours per drone – 
which translates in many learning sessions. To do it in shorter time you would use a more powerful 
processor (a 100 W GPU might do it in 10 minutes). The point is that innovative solutions 
(algorithm, architecture, circuit) will be crucial in making autonomous drone and robot swarms a 
reality. 
 
The trade-off will be even more pronounced in other platforms such as ground-bound robots or 
swarms of micro- or nanobots, depending on overall energy supply, operational circumstances and 
expected duration of the mission. For instance, the processor in a coin-size ground-bound swarm 
robot [TAR 16] consumes a comparable amount of energy compared to motors and camera-based 
sensors (actually closer to 80%). 
 

A NOTE ON BENCHMARKING AND TEST BEDS: 
Standardized environments and benchmark tasks have played a significant role in moving 
machine learning in general and single agent RL more specifically from toy problems to real life 
examples. However, lack of such standardized environments for multi-agent cooperative control 
tasks has been hampering progress in this domain. Fortunately, two benchmark tasks, “Starcraft 
Multi-Agent Challenge (SMAC)” [SAM 19], and “Multi-Agent Mujoco” [WIT 20], have been 
recently proposed. SMAC is based on the popular real-time strategy game StarCraft II. It focuses 
on micromanagement challenges in which each unit is controlled by an independent agent that 
must act based on local observations. It may be noted that, while SMAC can be a good benchmark 
for many control problems in multi-agent robotics, SMAC restricts the action space to discrete 
actions only. Multi-Agent Mujuco [WIT 20] on the other hand allows for continuous actions as 
well. It must be noted that neither SMAC nor Multi-agent Mujuco allow for the presence of a 
dedicated communication channel between agents. Presence of local communication channels, 
albeit with finite probability of failure, can significantly aid in solving multi-agent control tasks, 
and hence should be considered in future benchmark tasks.  

 
 

SWARMS ON A MISSION: FROM CONCEPTS TO REALITY 
 
It is fair to state that major progress has been made over the past few years in bringing energy-
efficient inference to Edge and Extreme Edge devices. Solutions include innovation at the algorithm 
(network architecture, pruning, numerical accuracy), architecture (logic/memory interaction, 
matrix-vector multiply accelerators) and circuit/device level (in-memory and in-sensor computing). 
As a result, facial, voice and object recognition functionality has started to appear in IoT and 
wearable devices, albeit often in a simplified and limited format. Examples are the speaker 
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recognition in the Amazon Echo, face recognition on the iPhone, and the person recognition on the 
Google Nest. 
 
Building effective swarms of autonomous edge devices requires all of this, and then some more. 
The necessary functionality goes substantially beyond the recognition and classification of well-
known objects and signals in the world around it, and includes the interpretation of novel 
conditions and environments, the decision of what actions to take based on these observations, 
and the learning of the efficacy of these actions (that is, the reward). Building these autonomous 
edge agents requires algorithms that allow agents to build world models of its environment in a 
self-supervised manner by intelligently interacting with the environment, and then using the world 
models to learn from past memories, predict, plan, and make decisions. The distributed learning 
and control algorithms described in previous sections definitely provide us with a window on what 
these functions may look like. Yet, one conclusion is abundantly clear: realizing these functions on 
severe {power, size, bandwidth}-constrained devices will require design improvements of orders 
of magnitude with respect to the current state-of-the-art in machine learning hardware, while 
meeting the robustness, security and privacy constraints of the application domains. In addition, 
solutions must be able to cope with rapidly varying dynamic conditions caused by changes in the 
environment, circumstance or varying network topologies. Beyond the realization concerns, it is 
also worth highlighting the crucial role to be played by simulation and verification environments. 
Evaluating the robustness and the trustworthiness of the learned models and policies may requires 
computational power many times that of the learning and inference tasks. While of uttermost 
importance, the task of developing powerful simulation and verification environments is beyond 
the scope of this paper. 
 
From the previous sections, we also learned that fully-centralized solutions, where the brunt of the 
computations are performed on a server or servers - where ample power is available - is not a true 
option from an applications perspective, due to bandwidth, reliability, security and privacy 
considerations. The actual solution we may converge to in the end may very well be a hybrid 
centralized/distributed one: expensive functions that are not latency constrained and only need to 
be done on an occasional base (such as interpreting a new object), or learning of models across 
many devices, are performed on the server, while anything that needs quick response time, 
requires high reliability, or is intrinsically related to a specific location is performed on the 
distributed device, or on the Edge. However, from a high-impact research perspective, it pays to 
focus on a “push-the-boundaries” challenge: what would it take and what are the paths to 
realization of a fully-distributed autonomous and collaborative swarm intelligence with life-long 
on-device learning. 
 

NOTE:  This is an impact-driven decision. This should by no means preclude a parallel agenda and 
roadmap, exploring the hybrid Cloud-Edge-Extreme Edge Scenario [see, for instance, NTT VLSI 
2020]. 

 
To that effect, we evaluate the algorithms and approaches introduced earlier and identify unique 
challenges and opportunities for efficient realization (as compared to the state-of-the-art). 
 
Unique challenges: 
 



SWARMS ON A MISSION 

16 

OCTOBER 2020   

 

§ On-device learning with extremely limited computational and energy resources.  
This includes building local world models, simulation and verification of policies in those models, 
gathering experience, and evaluating the effectiveness of local actions. 
 
§ Lack of supervision, and reliance on exploration and self-supervision inherently implies that the 

algorithm shall need many learning interactions with the environment to reach optimal 
performance. 

Collaboratively learning the world model in a decentralized manner across multiple edge devices 
might help reduce the computational load for each device (“shared education”).  This of course 
raises the question of the cost and overhead of inter-device communications.  
 
§ Fault-tolerance and resiliency against adversarial attacks. 
The system should be robust against malfunctioning agents as (ideally) also against adversarial 
agents. 
 
§ Operating under the constraint of limited memory.  
As stated earlier, the limited availability of memory at the swarm nodes impacts the size of the 
models that can be stored and operated on. The impact is however is even more profound from an 
architectural perspective. In a traditional deep learning setting, such as in cloud-based learning of 
large networks for perception, the presence of large batch sizes during learning allows us to exploit 
extensive parallelism to improve performance and reduce the power consumption, especially for 
the pervasive matrix multiplications. When memory is constrained, so is the sized of the available 
data that can be operated on. This by necessity leads to a different memory hierarchy and data 
flow.   
 
§ Operating under limited communication bandwidth.  
Given the decentralized nature of the swarm model, wireless communication and its limitations 
has a major impact on the solution space. The amount of information that can be shared over a 
period of time is limited. In addition, noise and interference can impact the reliability and 
robustness of the information shared. And finally, varying channel conditions and network 
topology requires dynamic adaptation.  
 
§ Operating under dynamically-varying conditions.  
Not only the wireless network conditions change dynamically, but so can the environment, the 
number of agents and their location, and the workloads and expectations. Some of these changes 
may occur quite rapidly, or can be quite devastating (for instance, a denial of service attack can 
shut down most network operation). Hence, swarm AI has to be able to effectively deal with change 
through adaptation and reconfiguration. 
 
§ Dealing with heterogeneity.  
Swarms can consist of drastically different devices with different capabilities and roles and 
different “views” of the world. Consider, for example, smart construction sites or smart agriculture. 
The learning and operating functions such a swarm will be much more difficult since transferring 
(parts of) models or aggregating model parameters between devices becomes far less effective or 
impossible when the devices differ too much.  
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§ Programmability and adaptivity. 
How to program a swarm consisting of many distributed devices? Individually programming devices 
that need to intimately collaborate is difficult, error prone, hard to test and deploy, maintain, and 
upgrade. Rather, swarms should be programmed and deployed as a whole. There are some strong 
similarities with regard to requirements solved by modern PGAS-style HPC programming languages 
(Chapel, Fortress, X11, Shark, UPC, CoArray Fortran), which view an HPC system conceptually as a 
single compute system rather than a collection of independent units (cf. MPI), but then distribute 
the computation over several nodes. This not only allows for a higher level of abstraction when 
designing the system, but also provides a number of unique guarantees with regard to data locality 
and communication bounds, among other things. By backing a PGAS-style programming language 
with a resilient work-stealing scheduler (Cilk Cobra, Go, TBB), it should then be possible to harden 
a computational swarm against inadvertent dropouts of single drones or other failures. 
 
A number of possible approaches to address these challenges can be considered. 
 
Unique Opportunities:  
 
§ Develop novel training schemes that enable sparse, low-resolution and compressed training 

of deep generative and reinforcement learning models to reduce memory and power 
consumption;  Derive compute architectures exploiting sparsity, low-resolution operations, 
and unique dataflow and memory hierarchy that emerges in reinforcement leaning and 
generative models to reduce memory and power consumption during training,  

 
The size of neural networks (with some networks now fielding tens of millions to few billon 
parameters) makes it difficult to store and evaluate these models on edge devices with limited 
memory. Hence the need for aggressive reduction of the memory need.  Initially focused on 
inference for perceptual tasks such as image classification, techniques such pruning, sparsification, 
weight and activation quantization, and model compression have shown major success [HAN 16, 
ZHU 17, VER 18]. These techniques give an existential proof that there exists a sparse and low-
resolution neural network that can achieve similar performance to a dense network for many tasks. 
Yet, translating these approaches to the learning phase has proven challenging. Fortunately, recent 
research has made some major progress, including a focus on learning sparse or compressed 
models from scratch, as well as direct training of quantized parameters [MOBv1, MOBv2]. One 
research avenue is to explore how these approaches (sparse, low resolution, compressed) translate 
to RL and generative modeling.  

One major challenge is how sparsity can be combined with compute efficiency. For 
example, training strategies that directly work with low resolution weights and activations allow us 
to leverage novel analog in-memory compute architectures, which are limited in resolution due to 
the underlying physics of the devices. However, these “systolic” compute engines are not 
optimized for sparse matrix multiplications and are unable to efficiently use sparsity. On the other 
hand, large-scale sparsity holds a lot of promise for reducing memory and power consumption.  
Hence, how to design efficient hardware for sparse operations is an interesting venue for 
research. This includes structured and block-level sparsity [e.g. MAO 17]. Co-designing memory 
optimized software and hardware for sparse and block sparse RL and generative models could help 
us significantly in reducing power consumption. Also, how to incorporate sparsity in next 
generation analog in-memory computing architectures is an area of research with large potential.  
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The closed-loop nature of RLs adds another twist to this story. It involves gathering 
experience, updating world models, imagining trajectories for planning, and selecting actions. This 
makes the dataflow and data-memory interaction different from conventional deep neural 
networks – In fact, instead of operating of large batches of data, it uses only small local experience 
buffer composed of most recent states, actions and rewards which could reduce the raw memory 
needed, but further increases the memory-bandwidth requirements. This may require revisiting 
memory structure and hierarchy and how to optimally address and access memory for RL and 
generative modeling tasks.  For instance, very-wide scratch memories and register files could be 
sufficient to hold all the necessary data for processing, and could help to perform in-situ data 
transformations. 
 
§ Enable efficient techniques for distributed AI across multiple edge devices to reduce each 

agent’s individual memory and power requirement; Develop supporting efficient wireless 
communication and networking approaches to support the distributed algorithms at a 
minimum overhead cost.  
 

In the Swarm setting, each distributed agent interacts with the world and learns based on its own 
observations using a small batch size, and then aggregates the model with its neighboring agents 
using various forms of consensus and gossip algorithms. Aspects of the world model can be shared 
or learned together by a group of autonomous agents. In addition to the world model, each 

autonomous agent can also 
learn a specific task or 
collaborate with other 
agents for shared tasks.  
Inspiration for this 
operational model can be 
found in OpenAI’s 
RoboSchool framework for 
RL [ROB 17], a model that 
expands very well into 
distributed RL. 
 

The differentiating factor in this model is the role of communication. The cost and latency of 
communicating information over a wireless network should not be ignored. Privacy-preservation 
can also add important constraints on communication. Hence what, when and how information is 
communicated is of essence with as guiding mantra: “Send only the information that is needed and 
send it as slowly as possible”.11 Current distributed agents rely on standard wireless protocols. 
While proven, this may not be the most effective way of sharing observed or learned information 
with neighboring nodes. For example, wireless communication has the intrinsic advantage that 
broadcasting is for free. Hence information or knowledge can easily be shared with all who care to 
hear – supporting consensus and gossip algorithms.  
 

                                                
11 This may seem counter-intuitive. It is however a direct result of Shannon’s Theorem. If you can slow down the required communication rate, 
you can reduce the energy/bit of information. This is a concept that biological systems (such as the brain) have perfected [STE 15]– but that is 
another story … 

 
Figure 6: Low-power distributed AI-enabled RoboSchool. 



SWARMS ON A MISSION 

19 

OCTOBER 2020   

 

On the other hand, broadcasting restricts the exchange of information to robots that are within 
the communication range. As an alternative to proximity-based networks, other logical topologies, 
such as containing scale-free aspects or network motifs, may result in a faster spread of 
information across the swarm and yield a better task performance [TUR 20, RAU 20]. In such a 
model, agents transmit information to targeted robots on a longer distance. How a system 
consisting of mobile agents could self-organize its interaction network topology is an active topic 
of study [XIA 20]. Such self-organization would also have to account for the underlying hardware 
capabilities. For instance, an agent taking the role of a central hub will need to spend a lot more 
energy on network communication." 
 
Finally, various means of temporal or spatial compression can be used. Using innovative data 
encoding and modulation schemes (such as high-dimensional data representations [KAN 09]), the 
communication itself can be used to perform computation (“in-network computation”) [LIN 19]. 
This is a domain for research with wide open opportunities that has been minimally explored so 
far. Finally, it may also become worthwhile to look into adaptive protocols, in which the 
information shared between agents varies over time, depending on the devices and the task at 
hand (only sending what is needed). This can be done similarly to how bytecodes in networked 
virtual machine can be adapted depending on the application scenario in order to optimize 
communication (but dynamically so) [AND 04]. Essential to progress however are simulation and 
modeling environments for ML that include accurate models of wireless communication and 
networking. 
 
§ Explore decentralized distributed agents collaborating performing a set of tasks under 

dynamically varying conditions caused by changes in the environment, circumstances or 
network topology. Develop efficient algorithms/architectures (supporting dynamic pruning, 
resolution and sparsity) that can deal with dynamics.    

 
The three most-differentiating factors of the “swarms on a mission” scenario are: (1) heavily 
constrained edge devices; (2) distributed; and (3) dynamic. Most of the research (as reported in 
this paper) has been focused on the former two issues. Yet, the dynamic nature of swarms is one 
of the most challenging problems. Wireless networks are dynamic by nature. Channel conditions 
vary over time, interference can cause links to be corrupted, and network topology can change 
dynamically. While wireless communication technology has evolved to mitigate most of these 
effects, the overhead can be large. In the end, the communication channel is still a stochastic 
process with a potential for large variability (a link can be completely dropped, for instance). In 
addition, the environment the swarms operate in changes dynamically, external circumstances can 
change the setting, nodes may come and disappear, etc. Hence, developing algorithms, models and 
architectures that can effectively deal with these dynamics are of essence. This may include 
architectures that can adjust accuracy or computational complexity dynamically, reconfigure to 
adjust to changing workloads, make fast context switches, learn by equivalence, etc. In the end 
though, one design principle will prove to be essential: whatever happens, the distributed system 
must prove to be robust and safe. While some of these concerns can be addressed through 
traditional wireless communication and networking techniques, others may require innovative 
solutions such as learning-based networks. The latter has received a lot of attention lately as is 
reflected in recent government programs and calls [NSF 19]. 
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§ Note that these are just some possible paths for progress, building and extending primarily on 
the current state-of-the-art. We may come to the realization that “same as before” will not do, 
and that we need radically different models and implementation platforms.  Hence, other 
pathways may and will arise over the next couple of years, some based on novel algorithms 
and computational models, others driven by technology innovation.  
 

For instance, the availability of large amounts of high density ultra-low energy nonvolatile storage, 
may allow for as much-as-possible pre-learning to occur. Replicating all the relevant information/ 
models on the distributed edge nodes would allow for fast adaptation to changing conditions 
(context-switching), and may help to reduce computation and communication.  
 
At the algorithm and architecture level, neuro- and biology-inspired approaches building on 
fundamentally different compute and encoding principles may be well positioned to address the 
identified challenges of autonomous intelligent systems of the “swarm on a mission”.  This 
opportunity includes exploration of spiking neural networks [MAA 97], encoding information in the 
timing or rates of spikes, inherently use of event-based computation, and allowing new learning 
rules such as e-prop [BEL 20], STDP and its variants [SJO 10]. Also, different forms of population 
encoding using large sparse distributed representations (implemented either with spiking neurons 
[ZAM 19], in architectures inspired by cortical microcircuits [HAW17]), or using simple binary 
vectors like hyperdimensional computing approaches [KAN 09, KAR 20]), could bring unique 
benefits to future autonomous intelligent systems. 
Of course, here too, a crucial part of the investigation is to engineer novel hardware components 
(both for the individual compute element and the tunable interconnections between them) and 
develop efficient learning and inference algorithms with those components. 
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RECOMMENDATIONS 
 
In this paper, we have enumerated a set of options that can lead to true swarm intelligence to 
arise over the next decades. Based on these observations, we give the following 
recommendations for progress:  

§ Identify forward-looking heterogenous multi-agent scenarios (with partners). Translate 
into simple case studies to drive algorithm exploration in simulation environments 
(RoboSchool [ROB17] can serve an example). FOCUS: Establish playground and 
prototyping testbeds. 

§ Establish benchmarking methodologies, and define quantitative comparison metrics 
(expanding on Table 2). Should build on scenarios. FOCUS: Quantifiable metrics beyond 
PPC. 

§ Explore decentralized distributed agents collaborating performing a set of tasks under 
dynamically varying conditions caused by changes in the environment, circumstances, 
network topology, or swarm composition. Develop efficient algorithms/architectures 
(supporting dynamic pruning, resolution and sparsity) that can deal with dynamics.   
FOCUS: Dynamic trade-off and adaptation. 

§ Develop and deploy a shared simulation and verification environment for distributed 
autonomous swarms. This would serve as a playground for algorithmic development, and 
as a source for the collection of data statistics (computational complexity, performance, 
efficiency, robustness and reliability. FOCUS: metrics, prototyping. 

§ Explore algorithms and schemes that enable sparse, low-resolution and compressed 
learning (and inference) of deep generative and reinforcement learning models. FOCUS: 
HW-aware algorithm selection for distributed learning.  

§ Build novel compute architectures exploiting sparsity, low-resolution operations, and 
unique dataflow and memory hierarchy that emerges in reinforcement leaning and 
generative models to reduce memory and power consumption.  FOCUS: In- or near 
memory computing exploiting sparsity. 

§ Enable efficient techniques for distributed operation across multiple edge devices to 
reduce each agent’s individual memory, power and communication requirements. 
FOCUS: Balance between computation, storage and communication. 
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