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Human-Centric Computing
Jan M. Rabaey , Fellow, IEEE

Abstract— With the world around us rapidly becoming
smarter, an extremely relevant question is how “we humans” are
going to cope with the onslaught of information coming at us. One
plausible answer is to use similar technologies to evolve ourselves
and to equip us with the necessary tools to interact with and to
become an essential part of the smart world. Various wearable
devices have been or are being developed for this purpose.
However, their potential to create a whole new set of human
experiences is still largely unexplored. To be more effective,
functionality cannot be centralized and needs to be distributed
to capture the right information at the right place. This requires
a human Intranet, a platform that allows multiple distributed
input–output and information processing functions to coalesce
and form a single application. In addition, it needs the capabilities
to understand, interpret, reason, and act on the obtained data
under diverse and changing conditions, and to do so in concert
with the human body and its computer, the brain. To this effect,
this article explores the concept of human-centric computing,
an approach that aspires to create a symbiotic convergence
between biological and physical computing.

Index Terms— Body-sensor networks, machine intelligence,
neuro-inspired computing, wearable computers.

I. INTRODUCTION

THERE is no doubt that the world around us is getting a
lot smarter quickly. With the advent of sensor networks,

the Internet of Things (IoT), Cyberphysical Systems, and
Swarms, virtually every single component of our daily living
environment is being equipped with sensors, actuators, and
processing, all of which connected wirelessly into a network
that soon will count trillions of sensors [4], [5]. Even more,
that network is changing as we speak and is becoming a lot
more dynamic. Early IoT incarnations were “static,” that is,
sensory nodes were placed in fixed locations and transmitted
the collected data to the Cloud for processing and interpre-
tation. In the emerging IoT++ world, nodes are attached to
robots, drones, vehicles, and humans that are moving freely
around and are evolving from pure data-gathering entities
toward closed-loop sense–interpret–actuate systems, enabling
distributed autonomous behavior.

All this leads to the question, what will be the role of us,
humans, in this smart new world? Indeed, many concerns
regarding information overload, employment, and artificial
intelligence (AI) dominance have been raised over the last
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few years and have created a nonnegligible pushback against
technology adoption. A more constructive approach, however,
may be to consider an alternative option: embrace that very
same technology to make us humans more adapted and
fine-tuned to that smarter world. An article in the National
Geographic Magazine in April 2017 titled “How Humans Are
Shaping Their Own Evolution” is stating it very succinctly [6]:
“Like other species, we are the products of millions of years
of adaptation. Now we’re taking matters into our own hands.”
To do so, one needs to reconsider the relationship between
humans and computing. Rather than considering the human
with her biological brain as being totally separate from the
physical computing world (the cloud, IoT), she should become
enmeshed with it. In other words, computing should become
human centric.

A quick search through Wikipedia yields the follow-
ing description: “Human-centered computing (HCC) studies
the design, development, and deployment of mixed-initiative
human–computer systems. It (…) is closely related to human–
computer interaction and information science” [7]. We believe
that this definition is still very much based on a traditional
human–computer interaction model. True HCC aspires to cre-
ate a symbiotic convergence between biological and physical
computing.

To reflect on what this may mean, let us analyze the
core tasks the mammalian brain performs. At its highest
level, it is trying to maximize a reward function that can be
quite complex, but that, in essence, boils down to a simple
“survive, prosper, reproduce” mantra. To accomplish these
goals, it observes the external world through a set of sensory
channels. All sensory data reaches the brain in the form of
tiny patterns that need be assembled in a larger picture on
spatial and temporal scales that are relevant to behavior [8].
Interpretation of these patterns, based on the past or learned
experiences, leads to decisioning and action—that is, coupled
to precise motor actions (move, grab, speak, etc.). All of
these forms a tight feedback loop that is continuously being
optimized to ensure the best possible outcome(s) (Fig. 1).
The optimization process is constrained by the availability of
resources, most importantly energy: “Is an action and its result
worth the energy that was spent, or would a different action
have yielded a better return?”

This is, however, only half of the story. Another essen-
tial function of the brain is to ensure the health and
well functioning of the (internal) system itself. To support
rich external behaviors, the human/animal needs specialized
internal organs and functions that help to provide energy to
the body where and when it is needed, to store energy for
future use, repair broken functionality, and protect against

1063-8210 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 03,2022 at 20:22:29 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-6290-4855


4 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 28, NO. 1, JANUARY 2020

Fig. 1. Inherent feedback loop in human computing.

Fig. 2. Inner and outer loops perform the same broad tasks. Note that they
also couple to serve each other (from [8]).

infectious agents and parasites. The brain acts as the effective
regulator for these functions, most often in a fully automatic
self-regulatory mode. To do so, it actually executes a feedback
loop that is virtually identical to one for the external tasks
(Fig. 2), including sensing/observation, the construction of
large patterns from small ones (“what time of the day is it?”,
“Is food be coming soon?”, etc.), as well as the making of
decisions and actioning (which could, for instance, be the
release of hormones). In fact, both feedback loops are coupled
to some degree, and serve each other.

Given these high-level observations, we can start imagin-
ing how technology and “physical” computing can help to
complement and even augment the biological system. Today
already, a number of wearable devices are on the market that
allow us to peer into the operation and well-being of our body.
We can measure our heart rate, blood oxygenation, blood sugar
levels, and our brain waves. In most cases, this translates
into a “monitoring only” functionality with no closed-loop
feedback. The latter is, however, bound to happen sooner or
later. We can imagine a network of devices worn on, implanted
in, or moving through the human body to perform a full
“introspection,” measuring a broad range of biophysical and
biochemical parameters. The obtained information can then be
interpreted and acted upon using a broad spectrum of measures
such as electrical, magnetic, or optical stimulation, and/or

Fig. 3. BMI as a closed-loop feedback system, including both a biological
and a physical computer in the loop.

precision drug delivery. As such, it acts as a complement and
an extension of the internal loops of our neural system.

The same holds for the external loops. Numerous devices
have been developed and used over the years to help
address malfunction or degradation of an individual’s sen-
sory systems. Examples of such are the hearing aid and
the artificial retina. Similarly, prostheses, exoskeletons, and
voice synthesizers help to restore functionality to missing
or failing motor functionality. Yet, the opportunities go far
beyond. Wearable and mobile devices may offer a broad
selection of sensory input channels that exceed, supplement
or augment our human sensory spectrum, and, as such, pro-
vide enhanced “extrospection.” This information is passed
to an embedded electronic processor, which translates the
information into something that maps onto the traditional
human input channels, through which it is passed to the
brain. The result can be a more efficient, an enhanced,
or a truly novel experience providing improved awareness.
Augmented-reality (AR) glasses are a perfect example of
such superimposing extra information on our visual input
channels. Sonification aims to map vision data onto auditory
signals, hence, cross-linking between sensory pathways [9].
The GPS function in the smartphone or watch provides us
with instant locationing and path planning capabilities. Before
its arrival, we spent a large amount of brain resources to
those tasks. An extra and distinguishing feature is that the
embedded processor(s) can be coupled to the Cloud through a
wireless link, offering not only more processing power but also
advanced learning and model-building capabilities, merging
the experiences of many individuals rather than one single
human.

The inner and outer loops of the brain are coupled and serve
each other. Taking one extra step forward, we can imagine
a direct coupling between the biological (the brain) and the
physical computers operating around the human body through
brain–machine interfaces (BMIs). These allow for a more
direct reading of intent or feedback of outcome, resulting in
a more effective and efficient overall system performance.
A schematic of the interplay between the two computer
domains is illustrated in Fig. 3. Experimental data has shown
that the BMI performs better and adapts faster when both
systems are allowed to “coadapt” [10].
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Fig. 4. Human Intranet. Picture courtesy of Y. Khan.

Given this motivation for “human-centric” computing,
the rest of the article will be devoted to an analysis of what
it will take to make it happen, an identification of the major
challenges and barriers in providing intelligence at a human
scale and a perspective on possible solutions. A simple case
study will help to put it all in perspective.

II. HUMAN INTRANET

The human-centric computing paradigm presents a system
vision. For example, disease would be treated by chronically
measuring bio-signals deep in the body, or by providing
targeted, therapeutic interventions that respond on demand
and in situ. To gain a holistic view of a person’s health,
these sensors and actuators must communicate and collab-
orate with each other. The challenge is scale: first in size
toward the nanomorphic cell and second in number, toward
hundreds of individual motes, each with a unique location and
function.

As a framework to enable this, we envision a Human
Intranet (Fig. 4): an open, scalable platform that seamlessly
integrates an ever-increasing number of sensors and actua-
tors, computation, storage, communication, and energy nodes
located on, in, or around the human body and acting in
symbiosis with the functions provided by the body itself [11].
Openness is an essential property if the Human Internet is
to evolve and to thrive based on the creativity of many
contributors—as has been the case in any IT platform such
as the PC, the smartphone, and the Internet.

A number of key properties need to be met for humans
to accept and embrace a network of nodes immersed around
and in their body. Just to name a few: unobtrusive and
assimilated, efficient and unburdensome, robust and safe,
secure and private, and, most of all, ethical. In addition,
the network should easily adapt or be adaptable to chang-
ing needs and applications. While some of these proper-
ties can be addressed by technology, other concerns may
require regulations, policies, or engagement rules to be
adopted.

A. Unobtrusive and Unburdensome

Technology scaling is most definitely the largest enabler
for the Human Intranet concept. Over less than two decades
wireless sense-and-compute nodes have scaled by more than
three orders of magnitude in size and energy efficiency. While
smaller transistor sizes (Moore’s law) have surely helped, most
of the scaling in the node size is due to “More than Moore”
(MtM) scaling: advanced packaging and integration techniques
that allow diverse technologies, such as sensors or energy
supplies, to be assembled together with more traditional silicon
devices for computation and memory in a 3-D form factor [12].
As a result, fully integrated “smart dust motes” of 1 mm3 in
size, as originally envisioned in 1997 [13], have now been
demonstrated [14]. Yet, to be truly unobtrusive, implanted
nodes should be even smaller, and extra orders of magnitude of
scaling should be pursued. In an ideal scenario, physical motes
may become equivalent in size to a biological cell, improving
the information flow and reducing the rejection by the body.
This requires innovation and creativity. The “neural dust” [15]
concept is an example of such.

For nonimplanted nodes worn on the body, conformity and
unobtrusiveness are essential factors. We have witnessed a
rapid progress over the last few years in the development of
flexible devices for sensing, communication, energy harvest-
ing, and energy storage, using techniques such as thin film and
printing technologies as well as various forms of smart fibers
and patches.

The evolution of BMIs over the last decades serves a perfect
example of the trend toward unobtrusiveness. Current state-
of-the-art technologies, as used in clinical trials on human
patients, still rely on rigid electrode arrays implanted into the
cortex and connection to data acquisition and processing hard-
ware via through-the-skull connectors and cables [16], [17].
These systems definitely are not amenable to out-of-clinic
daily life utilization and also have a limited operational
lifetime. In the past years though, enormous progress has been
made in the development of flexible and conformal electrode
arrays, low-power data acquisition and neuromodulation ICs
and wireless connectivity, and power delivery through the
skull. Some of these technologies are now finding their way
into medical devices from the major manufacturers and as
such will open the door for a much broader set of usage
scenarios. Even further down the road, innovative technologies
such as “neural dust” [15] will open the door for long-term
24∗7 deployment and may help BMI to transcend from the
medical to the consumer space.

B. True Integration of Energy and Information Distribution

Energy sparsity is one of the central challenges in the
construction of the Human Intranet. While some nodes (called
hubs1) may have a sizable energy reservoir in the form of
batteries or energy-harvesting capability, others may have zero

1The evolved smartphone would be a perfect example of a hub: among
others, it provides a bridge to the surrounding world with a diverse set of
broadband communication capabilities (5G and beyond), while providing huge
computation and data storage capacity. In addition, it serves as an energy
reservoir for the rest of the Intranet.
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Fig. 5. Data and energy communication skin around the body.

storage and require energy to be provided remotely when
information is requested. Paralleling, in a sense, the human
nervous and arterial systems, network nodes must collaborate
to form a communication “skin” in and around the body
(Fig. 5). This could be in the form of a hierarchical and adap-
tive mesh, delivering energy and/or information over hetero-
geneous physical links (wired and wireless, electromagnetic,
resistive, capacitive, inductive, acoustic, and/or optical [18]),
the choice of which is determined by local context: best
meeting the needs of the active applications while optimizing
the usage of the scarce resources such as energy.

C. Inherently Fail-Safe Operation

Given the often life-critical nature of its applications, it is
of essence that basic or partial functionality of the Human
Intranet is retained under all circumstances, even if resources
fail or are insufficient, when the system goes in overload
conditions, or when it is under denial of service attacks.
Fail safety must be built in from the ground up and should be
an inherent property of both basic components as well as their
compositions. Approaches to address this include baselining
and safe modes, exploitation of redundancy, and adaptivity
and reconfiguration.

D. Secure and Safe

Given the very personal nature of the information
being acquired and transmitted as well as the potentially

life-threatening effects of indiscriminate or malicious actua-
tion/stimulation, any solution should provide rock-solid pri-
vacy and security guarantees. We envision an integrated set of
mechanisms such as unique biomarkers and adaptive cloak-
ing [19], jointly labeled as the Human Firewall [20] to ensure
that private data, as circulated in the network, is protected and
secure, while protecting the network from external intrusions.
At the core of any such framework should be solid and
mandatory authentication and encryption technologies. When
implemented in custom hardware, state-of-the-art encryption
can be performed at pJ/bit (similar to what it costs to transmit
a bit), while the direct connection to the human body opens
the door for bio-parameter-based authentication.

E. Global and Distributed System Intelligence

The Human Intranet operates in a dynamic world subject
to both slow evolution and extremely fast changes both in the
surrounding environment and in the Intranet itself in activity,
conditions, composition, and resource needs and availability.
Therefore, the Human Intranet should be constructed as an
adaptive and evolutionary system that combines local decision
making with centralized global learning and optimization
performed in hub nodes (or in the cloud). This approach,
in which intelligence is both global and distributed, is essential
to deal with issues of latency and single points of failure,
while avoiding the trap of many distributed entities with
limited knowledge trying to address a global issue. As these
considerations are at the core of the human-centric computing
paradigm, we delve a bit deeper into what it will take to bring
AI to the Human Intranet.

III. AI AT THE EDGE

There are strong incentives to move the processing of
sensor data and the generation of actuation patterns for motor
functions as close as possible to the end points. Similar
arguments hold for closing the feedback loop locally rather
than relying on remote processing in the Cloud.

1) Energy Efficiency: is the first and foremost considera-
tion. Communication is expensive and wasteful, espe-
cially if raw data streams are involved. Nature has
figured this out many millions of years ago. A leading
principle that has guided the evolution of the brains
can be quoted as follows: “Send only what is needed,
and send it at the lowest possible rate” [8]. This
design principle has, for instance, guided the architecture
of the visual and olfactory systems in animals and
humans, in which the extraction of the small patterns
(features) is performed inside or right next to the sensory
arrays (“in-sensor computing”). On a more global scale,
“where to perform a given function” is determined by
the tradeoff between the relative costs of computation
and (wireless) communication, as illustrated in Fig. 6.
Since transmitting a bit may be equivalent to many
thousands of gate operations, it makes perfect sense
to reduce the communication rate by introducing some
local processing. At the same time, the computations
that can be performed are extremely constrained by the
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Fig. 6. Typical energy per transmitted bit for low-power wireless technologies
normalized to the energy cost of an FO4 NAND gate in a 22-nm CMOS
technology (∼1 fJ/operation): 1) BTLE at 1 Mbps; 2) Narrowband TX at 10
Mbps; 3) Directional 60-GHz millimeter-wave at 1 Gbps; and 4) Backscatter
at 1 Mbps.

available energy. Just as a point of reference, the energy
available from a small Zinc-Air Hearing Aid battery
is about 200 J (which is equivalent to transmitting
20 GB of data over a BTLE link). This is an order
of magnitude lower than what is available in an Apple
Watch (∼3000 J) and two orders lower than the iPhone
X (∼40 000 J). Hence, innovative approaches toward “AI
at the Edge” are necessary, especially for the wearable
and implantable devices.
Some other concerns beyond energy are influential in
determining the composition of the system architecture.

2) Latency: While many of the regulatory loops in the
mammalian body do not require a quick response,
a number of the external loops including visual and
voice communication and the resulting motor actions
certainly do. For those, latencies larger than 10 ms
translate into severe degradation in performance and
potentially failure. Getting guarantees of this order is
extremely hard for Cloud-in-the-Loop solutions.

3) Robustness and Safety: As many of the Human Intranet
applications directly involve humans, safety is a crucial
concern. Solely relying on wireless links to remote
computational processing leads to systems that are vul-
nerable and prone to failures. Some form of autonomy
is essential for systems to operate reliably, especially in
the presence of failures or major disturbances.

4) Security and Privacy: Human-centric computing brings
technology as close as possible to the essence of the
human being. Data gathered from our body reveals
our physical and mental health. Keeping this data
local is far more secure than sending it to a remote
server. It also helps to preserve privacy. Similarly,
inadvertent or malicious actuation of motor functions
can be life threatening. Having a firm firewall around
the human body and keeping most essential processing
inside of it can help to prevent malicious attacks (similar
to the body’s immune systems) [20].

All this clearly motivates the need for ultralow power
(<1 mW) distributed processing. Some of that processing

relates to simple tasks such as data acquisition, signal condi-
tioning, and feature extraction, all of which should be located
close to the sensors. However, understanding, reasoning, and
decisioning require more advanced functionality, a major frac-
tion of which would be learning based. In the last few years,
we have witnessed some major advances in the realization
of learning-based computing for embedded applications. This
has helped to increase energy efficiency to the range of tera
operations per second (TOPS)/Watt for deep-net accelerator
functions (e.g., [21]). Progress was made using a number of
architectural and circuit innovations, including approximate
and statistical computing [22], analog processing [23], and in
memory computing [24]. These results surely are impressive
and help bring AI to the Edge (as described in detail in a
keynote presentation at ISSCC in 2019 [25]). However, there
are some major concerns. All these deep-net accelerators focus
on inference only. Training (learning) requires different oper-
ations, is complex and compute hungry, and requires massive
amounts of data. It is still far from human-like intelligence,
which is based on continuous learning and improvement,
learning by equivalence, and very often requires little data
to get started. One can argue that similar considerations hold
for human-centric computing. Operating in an ever-changing
environment, novel situations or changing conditions occur
that require quick response without a lot of background
training. Similarly, each human is different—hence, there is
no one-size-fits-all solution. Customization of the processing
for a single human often leads to simpler and more effective
solution (see [26]). In short, AI when applied to human-centric
computing has to be plastic and be capable of continuous
evolution. This may require some fundamental rethinking of
how computation is performed.

IV. COMPUTING WITH PATTERNS

Before selecting any approach to accomplish the above-
defined goals, it is worthwhile to peruse the complete AI land-
scape first. The domain of AI covers any approach that mimics
human intelligence, that is, programs that sense, reason, act,
learn, and adapt. It is very rich, and spans a broad range of
techniques and models (Fig. 7). Many of these approaches fall
under the machine-learning (ML) header—those are systems
that perform a specific task without using explicit instructions,
relying on patterns and inferences instead. One prominent ML
approach is the field of Bayesian ML, in which quantities
of interest are treated as random variables, and one draws
conclusions by analyzing the posterior distribution over these
quantities given the observed data.

The neuro- or brain-inspired computing approach forms
another important class of ML algorithms. It refers to com-
putational models and methods that are based on abstractions
and models of the mechanisms and topologies of the brain.
Prominent examples of this class of AI are the artificial neural
nets (ANNs), with deep learning networks as the most wide-
spread representative [27]. The latter includes architectures
such as deep belief networks, convolutional NNs, and recur-
rent NNs. These approaches have been immensely successful
over a broad range of specific tasks that range from playing
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Fig. 7. Coarse classification of AI approaches.

games such as Go over facial recognition to autonomous
driving. It builds around an abstract model of a “neuron,”
an interconnect topology, and overlaying learning and infer-
ence mechanisms. It is fair to state that the breakthrough of
ANNs, after many false starts, was ultimately triggered when
huge data sets and fast parallel computing platforms became
available.

Finally, the field of neuromorphic computing [28] covers
a range of analog, digital, mixed-mode analog/digital very
large-scale integration (VLSI), and software systems that
implement models of neural systems (for perception, motor
control, or multisensory integration). While it technically
belongs to the domains of ML and neuro-inspired computing,
its inspiration is to build physical computing systems that
mimic the operation of the brain in a bottom-up fashion.
As such, it presents more of a computing architecture than
a computational model. Prominent examples of commercial
implementations of neuromorphic computers are the IBM
TrueNorth processor [29] and the Intel Loihi processor [30].
The spiking NN (SNN) is one class of neuromorphic NN that
has received a lot of attention. Its event-driven executional
model makes it particularly attractive for low-energy realiza-
tions [31].

It is apparent that any integrated human-centric computing
system will combine a selection of AI techniques. Simple
classification is often perform best using an ML approach
such as a support-vector machine (SVM). Classification or
recognition of more complex objects in an image are done
very well with a deep NN. Yet, even the broad ensemble

Fig. 8. Data flow in HD processor using language recognition as an example.
The stream of input characters is mapped into a HD representation first.
Temporal patterns are captured by the encoder, which ultimately creates a
single pattern that represents that piece of text. The AM stores the patterns
and/or performs search for similar patterns.

of techniques described above does little to address some
of the identified needs for human-centric computing, that is
the need for plasticity, quick and continuous learning, and
dealing with novelty, while at the same time pushing the
energy boundaries. Inspiration from the biological brain may
help. As illustrated in Fig. 2, the brain operates on patterns.
From the sensor arrays, small patterns are extracted that are
then gradually composed into larger patterns. While the former
happens at the sensor interface, the latter is performed more
centrally in the cortex. After comparing these with stored
patterns, output behaviors are determined again as patterns,
which are then gradually broken down into smaller patterns
that regulate motor function. Patterns can be represented
in many ways, such as phase, time, or frequency relations
between numerous neurons. It is interesting to note that
aforementioned approaches such as ANNs and SNNs actually
can be considered to performing operations on patterns.

This observation has given rise to a different approach to
neuro-inspired computing called high-dimensional computing
(HDC) [32]. Rather than using numbers, HDC operates on
very long (D > 1000) random vectors (that are most often
binary) to represent patterns. It builds on the observation that
long randomly chosen vectors are (almost) orthogonal. Any
deviation from orthogonality means that there is a relation
between the patterns encoded in the vectors. To match, it is
sufficient that two vectors are “similar” (measured using
some norm, such as the Hamming distance). HDC first maps
incoming sensory data into high-dimensional (HD) spaces and
then proceeds to encode temporal and spatial information by
algebraic operations on these vectors. The resulting pattern can
be stored in memory, or can be compared against patterns that
were already observed (Fig. 8). This can be repeated, creating
patterns at different levels of abstraction.

This computational approach comes with some interesting
properties, which make it very attractive for ultralow-power
operation while supporting plasticity: 1) it is statistical and
robust against errors and variations; hence, it can operate
at low signal-to-noise ratios; 2) as it is based on algebraic
operations on vectors, it provides transparency and allows
reasoning about the results; 3) it learns quickly—often a few
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Fig. 9. Monolithic 3-D-integrated HD processor, combining logic and
nonvolatile memory (Adopted from [33]).

training sessions are sufficient; 4) it can learn incrementally
and continuously; 5) it computes in superposition—meaning
that data is superimposed on top of each other and can be
queried with a single operation; and 6) the central element
is the associative memory (AM), which performs search and
match. Association is an important part of the mammal brain
as well.

Some of the properties mentioned above make HDC a great
candidate for realization in deeply scaled technologies support-
ing true 3-D stacking of devices: robustness against failure
and variation; low SNR operation; systolic nearest-neighbor
communication only; and in-memory computing (for the
AM). A true 3-D realization of an HD processor using
carbon-nanotube devices stacked on resistive random access
memory (RRAM) memory cell was demonstrated at ISSCC
in 2018 (see Fig. 9). While only a limited prototype, it goes
a long way in demonstrating the long-term feasibility of
advanced AI devices at nanoscales and ultralow power [33].

The above hopefully serves to show that there is a
huge opportunity still in the exploration of computational
approaches inspired by the mammal brain to create compu-
tational modules that meet the tight constraints imposed by
human-centric computing, while at the same time exploiting
the most advanced approaches semiconductor technology got
to offer.

V. CASE STUDY

To bring together the many aspects of human-centric com-
puting and the Human Intranet, as they converge into a
single system, we present an example of an electromyogra-
phy (EMG)-driven hand-gesture recognition system. Accurate
recognition of hand gestures is crucial to the functionality of
smart prosthetics and other modern human–computer inter-
faces. Many ML-based classifiers use EMG signals as input
features, but they often misclassify gestures performed in
different situational contexts (changing arm position, reappli-
cation of electrodes, etc.) or with different effort levels due to
changing signal properties.

To combat this variability, an end-to-end system was
designed using a large-area, high-density sensor array, an inte-
grated acquisition system, and a robust classification algorithm
(Fig. 10) [34]. The EMG electrodes were fabricated on a
flexible substrate and interfaced to a custom wireless device for
64-channel signal acquisition and streaming. HD computing

Fig. 10. EMG-based gesture recognition system. (a) EMG signals are
obtained from flexible sensor array providing 64 channels. (b) Signals are
processed and classified in a small processor system and (c) placed next to the
electrodes on the arm. After some preprocessing, sensor data is mapped into
an HD space and fed to encoder to capture spatial and temporal information.
(d) Patterns representing various gestures are stored and compared gains in
an AM. (e) Only a few trials are needed to get high accuracy.

Fig. 11. Gesture recognition accuracy drops when conditions are changed.
A short retraining and merging the new experiences with the old restores the
accuracy under both conditions. (Accuracy measured over 21 gestures and
multiple subject.)

was used for the processing of the EMG features using a
one-shot learning approach. The HD algorithm is tolerant to
noise and electrode misplacement and can quickly learn in
situ from few trials without gradient descent or back propa-
gation: an average classification accuracy of 96.64% for five
gestures is obtained, with only 7% degradation when trained
and tested across different days. The system maintains this
accuracy when trained with only three trials of gestures; it
also demonstrates comparable accuracy with the state of the
art when trained with one trial.

This architecture easily supports incremental and contin-
uous learning, as all the learned data is stored in the AM.
When conditions change (for instance, the sensor array moves,
or the arm is held in a different position), new patterns
can be added to the AM, or merged with existing patterns,
maintaining accuracy over all the experiences, as illustrated
in Fig. 11.
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VI. PERSPECTIVES

This article presented a vision on how physical and biolog-
ical computing are on a convergence path. The realization of
this vision to its full extent will take many more decades.
It requires innovation on many fronts including interfaces,
processing, communications, and energy provisioning. Today,
though, we already see instances emerge that give a glimpse
of what may be possible in the long term: with the advent
of the smart watch, wearables are becoming common place;
wearable medical devices such as smart patches are making
their inroads; hearing aids are starting to integrate multiple
sensors and incorporate AI [35]; AR/voltage regulator (VR)
glasses help to transform the way humans see the world
around them; and BMIs have been demonstrated in laboratory
and clinical settings. At the same time, these systems are
mostly standalone and ad hoc and do not profit from the
wealth of information that could be available in a shared
platform. It is only when an open platform such as the
Human Intranet is adopted that we will see the full power
of human-centric computing, serving as a full complement
to our brain.

With this evolution come many questions and concerns that
need be addressed upfront if one wants to avoid a severe
societal backlash. It is extremely likely that a majority of
the technology challenges identified above will be resolved
in the coming decade(s). However, this is only a necessary
and not a sufficient condition for human-centric computing
and the Human Intranet to be readily and broadly adopted.
Technology that extends or modifies human capability is not
always readily accepted. Even more, it is often met with
fierce resistance. While this is a less of an issue when
the technology addresses severe illness or health issues (the
inner loops), the spread of technologies that complement
or augment the human capabilities (the outer loops) raise
many ethical questions that need be addressed. Hence, there
is no doubt that policies and operational rules should be
at the core of the human-centric computing paradigm. The
same holds for the ways personal data is processed, han-
dled, and shared. Before rushing a technology to the mar-
ketplace, we, as technologists, should reflect on the many
ways that technology can be misused and incorporate means
to deflect.
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